Respuesta :
ANSWER
[tex]\frac{ {x}^{2} }{64} + \frac{ {y}^{2} }{81} = 1[/tex]
EXPLANATION
The length of the vertical major axis is 18.
This implies that,
[tex]2a = 18.[/tex]
[tex]a = 9[/tex]
The length of the minor axis is 26.
This means that,
[tex]2b = 16[/tex]
[tex]b = 8[/tex]
The orientation is on the y-axis. The equation is given by:
[tex] \frac{ {x}^{2} }{ {b}^{2} } + \frac{ {y}^{2} }{ {a}^{2} } = 1[/tex]
[tex]\frac{ {x}^{2} }{ {8}^{2} } + \frac{ {y}^{2} }{ {9}^{2} } = 1[/tex]
[tex]\frac{ {x}^{2} }{64} + \frac{ {y}^{2} }{81} = 1[/tex]
[tex]\frac{ {x}^{2} }{64} + \frac{ {y}^{2} }{81} = 1[/tex]
EXPLANATION
The length of the vertical major axis is 18.
This implies that,
[tex]2a = 18.[/tex]
[tex]a = 9[/tex]
The length of the minor axis is 26.
This means that,
[tex]2b = 16[/tex]
[tex]b = 8[/tex]
The orientation is on the y-axis. The equation is given by:
[tex] \frac{ {x}^{2} }{ {b}^{2} } + \frac{ {y}^{2} }{ {a}^{2} } = 1[/tex]
[tex]\frac{ {x}^{2} }{ {8}^{2} } + \frac{ {y}^{2} }{ {9}^{2} } = 1[/tex]
[tex]\frac{ {x}^{2} }{64} + \frac{ {y}^{2} }{81} = 1[/tex]
Answer:
x²/64+y²/81 = 1
Step-by-step explanation:
We have given the the vertical major axis of ellipse= 18
And minor axis of length 16.
We have to find the equation of ellipse .
The standard equation of ellipse is:
x²/d² +y²/c² = 1 when orientation is y -axis.
As vertical major axis of ellipse= 18
So, 2c = 18 then c = 9
And minor axis of length = 16.
So, 2d = 16
d = 8
Put the values in standard equation we get,
x²/64+y²/81 = 1 is the equation of ellipse.