Respuesta :

Answer:

Part 1) [tex]m\ arc\ CB=64\°[/tex]

Part 2) [tex]m<AOC=116\°[/tex]

Part 3) [tex]m\ arc\ AD=26\°[/tex]

Part 4) [tex]m\ arc\ DFB=154\°[/tex]

Part 5) [tex]m<CDB=32\°[/tex]

Step-by-step explanation:

Part 1) Find the measure of arc CB

we know that

[tex]m\ arc\ CB=m<COB[/tex] -----> by central angle

we have

[tex]m<COB=64\°[/tex] ----> given problem

so

[tex]m\ arc\ CB=64\°[/tex]

Part 2) Find the measure of angle AOC

we know that

[tex]m<AOC+m<COB=180\°[/tex] ------> by supplementary angles

we have

[tex]m<COB=64\°[/tex]

substitute

[tex]m<AOC+64\°=180\°[/tex]

[tex]m<AOC=180\°-64\°=116\°[/tex]

Part 3) Find the measure of arc AD

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]m<ABD=\frac{1}{2}(m\ arc\ AD)[/tex]

we have

[tex]m<ABD=13\°[/tex]

substitute

[tex]13\°=\frac{1}{2}(m\ arc\ AD)[/tex]

[tex]m\ arc\ AD=26\°[/tex]

Part 4) Find the measure of arc DFB

we know that

[tex]m\ arc\ DFB=360\°-(m\ arc\ AD+m\ arc\ ACB)[/tex]

we have

[tex]m\ arc\ AD=26\°[/tex]

[tex]m\ arc\ ACB=180\°[/tex] -----> because is a diameter

substitute

[tex]m\ arc\ DFB=360\°-(26\°+180\°)=154\°[/tex]

Part 5) Find the measure of angle CDB

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]m<CDB=\frac{1}{2}(m\ arc\ CB)[/tex]

we have

[tex]m\ arc\ CB=64\°[/tex]

substitute

[tex]m<CDB=\frac{1}{2}(64\°)=32\°[/tex]

Ver imagen calculista