Given that a rectangle has a length of 5 2 x + 10 with a width of 5 2 x + 5, which expression represents the area of the rectangle? A) 25x2 2 + 75x 2 + 50 B) 25x2 4 + 75x 4 + 50 C) 25x2 4 + 75x 2 + 50 D) 25x2 2 + 75x 4 + 50

Respuesta :

Answer:

Option c is correct

[tex]\frac{25}{4}x^2+\frac{75}{2}x+50[/tex]

Step-by-step explanation:

Area of the rectangle (A) is given by:

[tex]A= lw[/tex]               ....[1]

where,

l is the length and w is the width of the rectangle.

As per the statement:

Given that a rectangle has a length of [tex]\frac{5}{2}x+10[/tex] with a width of [tex]\frac{5}{2}x+5[/tex]

⇒l = [tex]\frac{5}{2}x+10[/tex]

and w =  [tex]\frac{5}{2}x+5[/tex]

Substitute in [1] we have;

[tex]A = (\frac{5}{2}x+10) \cdot (\frac{5}{2}x+5)[/tex]

⇒[tex]A = \frac{25}{4}x^2+\frac{25}{2}x+\frac{50}{2}x+50[/tex]

Combine like terms we have;

[tex]A = \frac{25}{4}x^2+\frac{75}{2}x+50[/tex]

therefore, the expression represents the area of the rectangle is,  [tex]\frac{25}{4}x^2+\frac{75}{2}x+50[/tex]

Answer:

C

Step-by-step explanation:

Apply FOIL method (First, Outer, Inner, Last) to multiply the length and width binomial expressions.