Respuesta :

gmany

Answer:

[tex]\large\boxed{y-1=\dfrac{1}{2}(x-5)\leftarrow\text{point-slope form}}\\\boxed{y=\dfrac{1}{2}x-\dfrac{3}{2}\leftarrow\text{slope-intercept form}}\\\boxed{x-2y=3\leftarrow\text{standard form}}[/tex]

Step-by-step explanation:

The point-slope of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

We have

the point [tex](5,\ 1)\to x_1=5,\ y_1=1[/tex]

and the slope [tex]m=\dfrac{1}{2}[/tex]

Substitute:

[tex]y-1=\dfrac{1}{2}(x-5)[/tex]          use distributive property

[tex]y-1=\dfrac{1}{2}x-\dfrac{5}{2}[/tex]       add 1 to both sides

[tex]y=\dfrac{1}{2}x-\dfrac{3}{2}[/tex]        multiply both sides by 2

[tex]2y=x-3[/tex]               subtract x from both sides

[tex]-x+2y=-3[/tex]            change the signs

[tex]x-2y=3[/tex]