Respuesta :

Answer:

- [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

Substitute the given values into the equation and evaluate

v = 2 + (- 5 × [tex]\frac{1}{2}[/tex])

  = 2 - [tex]\frac{5}{2}[/tex]

  = [tex]\frac{4}{2}[/tex] - [tex]\frac{5}{2}[/tex] = - [tex]\frac{1}{2}[/tex]

Answer:   [tex]\bold{v=-\dfrac{1}{2}}[/tex]

Step-by-step explanation:

v = u + at

Substitute u = 2, a = -5 , t = [tex]\dfrac{1}{2}[/tex]

[tex]v=(2)+(-5)(\dfrac{1}{2})\\\\\\.\ =2 - \dfrac{5}{2}\\\\\\.\ =2\bigg(\dfrac{2}{2}\bigg)-\dfrac{5}{2}\qquad \text{need a common denominator to add fractions}\\\\\\.\ =\dfrac{4}{2}-\dfrac{5}{2}\\\\\\.\ =\boxed{-\dfrac{1}{2}}[/tex]