What is the area of a sector with a central angle of 4π5 radians and a radius of 11 cm? Use 3.14 for π and round your final answer to the nearest hundredth. Enter your answer as a decimal in the box. 11 cm²

Respuesta :

Answer:  151.98 cm²

Step-by-step explanation:

[tex]Area_{\ sector}=\dfrac{r^2}{2}\cdot \theta\\\\.\qquad \qquad =\dfrac{(11)^2}{2}\cdot \dfrac{4}{5}\pi\\\\.\qquad \qquad =\dfrac{242}{5}\pi\\\\.\qquad \qquad =151.976[/tex]

The area of sector will be [tex]151.98cm^{2}[/tex].

Area of sector is  [tex]=\frac{r^{2} }{2}*\theta[/tex]

Where r is radius of circle and [tex]\theta[/tex] is central angle.

Given that ,  [tex]r=11cm[/tex]   and  [tex]\theta=\frac{4 \pi}{5}[/tex]

Substituting above values.

          [tex]Area=\frac{(11^{2} )}{2} *\frac{4\pi}{5}[/tex]  and   [tex]\pi=3.14[/tex]

         [tex]Area=\frac{(11^{2} )}{2} *\frac{4*3.14}{5}\\\\Area=151.98cm^{2}[/tex]

Hence, The area of sector will be [tex]151.98cm^{2}[/tex].

Learn more:

https://brainly.com/question/12792310