Segment RS has endpoints at R(5,-3) and S(5,13) , Point Q lies on RS such that RQ : QS = 3 : 1 . Which of the following must be on the coordinates of Q?
(1) (5,1)
(2) (17,3)
(3) (5,9)
(4) (6,4)

Respuesta :

frika

Answer:

(3) Q(5,9)

Step-by-step explanation:

Let point Q has coordinates (x,y). Consider vectors [tex]\overrightarrow{RQ}[/tex] and [tex]\overrightarrow{QS}.[/tex] Note that

  • [tex]\overrightarrow{RQ}=(x-5,y+3);[/tex]
  • [tex]\overrightarrow{QS}=(5-x,13-y).[/tex]

Since [tex]\dfrac{RQ}{QS}=\dfrac{3}{1},[/tex] then

[tex]\dfrac{\overrightarrow{RQ}}{\overrightarrow{QS}}=\dfrac{3}{1},[/tex]

Thus,

[tex]\dfrac{x-5}{5-x}=\dfrac{3}{1}\Rightarrow x-5=3(5-x),\ x-5=15-3x,\ 4x=20,\ x=5.\\ \\\dfrac{y+3}{13-y}=\dfrac{3}{1}\Rightarrow y+3=3(13-y),\ y+3=39-3y,\ 4y=36,\ y=9.[/tex]

The coordinate of the point q are x=5 and y=9 that is Q(5,9).

We have given that RQ : QS = 3 : 1 .

points R(5,-3),S(5,13)

What are the points coordinate of vector RQ and QS?

Let point Q has coordinates (x,y). Consider vectors [tex]\overrightarrow{RQ}[/tex] and [tex]\overrightarrow{QS}[/tex]. Note that

[tex]\overrightarrow{RQ}=(x-5,y+3);[/tex]

[tex]\overrightarrow{QS}=(5-x,13-y).[/tex]

So we have given that,

[tex]Since \dfrac{RQ}{QS}=\dfrac{3}{1}, then[/tex]

[tex]\dfrac{\overrightarrow{RQ}}{\overrightarrow{QS}}=\dfrac{3}{1},[/tex]

Thus,

[tex]\dfrac{x-5}{5-x}=\dfrac{3}{1}\Rightarrow x-5=3(5-x),\ x-5=15-3x,\ 4x=20,\ x=5.\\ \\\dfrac{y+3}{13-y}=\dfrac{3}{1}\Rightarrow y+3=3(13-y),\ y+3=39-3y,\ 4y=36,\ y=9.[/tex]

Therefore we get the coordinate of the point q are x=5 and y=9.

That is Q(5,9).

To learn more about the coordinate of vector visit:

https://brainly.com/question/14856860