Respuesta :

Integration Formula:

[tex]\int\limits {x}^{n} \, dx =\frac{x^{n+1}}{n+1} + C[/tex]

Integrate each term:

[tex]\int\ {x^{2}} \, dx = \frac{x^{3}}{3}[/tex]

[tex]\int\ {x} \, dx =\frac{x^2}{2}[/tex]

[tex]\int\ {5} \, dx = 5x[/tex]

[tex]\int\ {x} \, dx =\frac{x^2}{2}[/tex]

[tex]\int\ {2} \, dx = 2x[/tex]

Altogether this becomes:

[tex]\frac{\frac{x^3}{3} - \frac{x^2}{2}-5x }{ \frac{x^2}{2}+2x}[/tex]

Your limits are 1 and 2. Substitute both numbers into the equation and minus them from each other.

x = 2:

[tex]\frac{\frac{2^3}{3} - \frac{2^2}{2}-5(2) }{ \frac{2^2}{2}+2(2)}[/tex]

-

x = 1:

[tex][tex]\frac{\frac{1}{3} - \frac{1}{2}-5 }{ \frac{1}{2}+2}[/tex][/tex]

x = 2:

[tex]\frac{\frac{8}{3} - \frac{4}{2}-10 }{ \frac{4}{2}+4}[/tex]

-

x = 1: [tex]\frac{\frac{8}{3} - 2-10 }{ 2+4}[/tex]

=

-1.212317928

Now convert all the answers to integers and see which one matches -1.212317928:

Because it's a negative number, we know it can only be A or B.

(A) = -1.212317928

(B) = -1.19047619

The answer is A: [tex]-\frac{3}{2} +In\frac{4}{3}[/tex]

(A) - 3/2 = ln 4/3