Respuesta :
[tex]\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=6 \end{cases}\implies V=\cfrac{4\pi 6^3}{3}\\\\\\ V=288\pi \implies V\approx 1533.1[/tex]
Answer:
904.30
Step-by-step explanation:
Lets set up the equation for the volume of a sphere:
V = 4/3 x 3.14 x r³
Now/ lets substitute r for 6
V = 4/3 x 3.14 x 6³
Now, using PEMDAS, we get rid of the exponent.
V = 4/3 x 3.14 x 216
Next, multiply 4/3 by 3.14 to get 4.1866...(6 will keep repeating)
V = 4.1866 x 216
Lastly, multiply 4.1866 by 216
V = 4.1866 x 216 = 904.3