Respuesta :

QUESTION 1

The given ellipse has equation:

[tex]4 {x}^{2} + 25 {y}^{2} = 100[/tex]

Divide through by 100 to get;

[tex] \frac{ {x}^{2} }{25} + \frac{ {y}^{2} }{4} = 1[/tex]

The ellipse has it major axis on the x-axis.

[tex] {a}^{2} = 25[/tex]

[tex]a = \pm5[/tex]

The vertices is

(-5,0) and (5,0).

Also

[tex] {b}^{2} = 4[/tex]

[tex]b = \pm2[/tex]

The co-vertices are,

(0,-2), (0,2).

We use

[tex] {a}^{2} - {b}^{2} = {c}^{2} [/tex]

[tex] {c}^{2} = {( \pm5)}^{2} - {( \pm2)}^{2} [/tex]

[tex] {c}^{2} = 25 - 4[/tex]

[tex] {c}^{2} =21[/tex]

[tex]c = \pm \sqrt{21} [/tex]

The foci:

[tex](\pm \sqrt{21} ,0)[/tex]

We plot all these points and graph our ellipse.

See attachment

QUESTION 2.

If the ellipse has a vertex at

(0,-8) and a focus at (0,4) then

[tex] {a}^{2} = 64[/tex]

and

[tex] {c}^{2} = 16[/tex]

we can use

[tex]{a}^{2} - {b}^{2} = {c}^{2} [/tex]

to determine the value if b.

[tex] {( - 8)}^{2} - {b}^{2} = {4}^{2} [/tex]

[tex] 64- {b}^{2} = 16[/tex]

[tex]{b}^{2} = 64 - 16[/tex]

[tex] {b}^{2} = 48[/tex]

The equation of the ellipse is

[tex] \frac{ {x}^{2} }{ {b}^{2} } + \frac{ {y}^{2} }{ {a}^{2} } = 1[/tex]

[tex] \frac{ {x}^{2} }{48} + \frac{ {y}^{2} }{64} = 1[/tex]
Ver imagen kudzordzifrancis