Answer:
The solutions are: [tex]x=7[/tex] or [tex]x=-2[/tex].
Step-by-step explanation:
The given equation is [tex]x^2=5x+14[/tex]
We rewrite in the standard quadratic form to obtain;
[tex]x^2-5x-14=0[/tex]
We split the middle term with -7,2 because their product is -14 and their sum is -5.
[tex]x^2-7x+2x-14=0[/tex]
Factor by grouping;
[tex]x(x-7)+2(x-7)=0[/tex]
[tex](x-7)(x+2)=0[/tex]
Either [tex](x-7)=0[/tex] or [tex](x+2)=0[/tex].
Either [tex]x=7[/tex] or [tex]x=-2[/tex].