The area of a square floor on a scale drawing is 36 square cm, and the scale drawing is 1cm:4ft. what is the area of the actual floor? What is the ratio of the area in the drawing to the actual area?

Respuesta :

Answer:

Part a) The area of the actual floor is [tex]576\ ft^{2}[/tex]

Part b) The ratio of the area in the drawing to the actual area is [tex]\frac{1}{16}\frac{cm^{2}}{ft^{2}}[/tex]

Step-by-step explanation:

step 1

Find the length of the square floor on a scale drawing

Let

b-----> the length side of the square floor on a scale drawing

we know that

[tex]A=b^{2}[/tex]

we have

[tex]A=36\ cm^{2}[/tex]

[tex]36=b^{2}[/tex]

[tex]b=6\ cm[/tex]

step 2

Find the length of the square floor in the actual floor

we know that

the scale drawing is [tex]1cm:4ft[/tex]

so

the length of the square floor in the actual floor is equal to

[tex]6*4=24\ ft[/tex]

step 3

Find the area of the actual floor

[tex]A=24^{2}=576\ ft^{2}[/tex]

step 4

Find the ratio of the area in the drawing to the actual area

[tex]\frac{36}{576}\frac{cm^{2}}{ft^{2}}[/tex]

simplify

[tex]\frac{1}{16}\frac{cm^{2}}{ft^{2}}[/tex]