Respuesta :

Answer: [tex]x^{3} y^{2} \sqrt[3]{xy^{2} }[/tex]

Step-by-step explanation:

Step 1: Evaluate the powers

[tex]z^{0}[/tex] equals 1.

Step 2:---

Any expression multiplied by one stays the same. So This -->  [tex]\sqrt[3]{(x^{5}y^{4}1)^{2} }[/tex] becomes this --->[tex]\sqrt[3]{(x^{5}y^{4})^{2} }[/tex]

To raise a product to a power, raise each factor to that power.

So this --->[tex]\sqrt[3]{(x^{5}y^{4})^{2} }[/tex] becomes this [tex]\sqrt[3]{x^{10} y^{8} }[/tex]

Step 3: Simplify root

Then we simplify the radical.

[tex]{x^{3}y^{2}\sqrt[3]{xy^{2} } \sqrt[3][/tex]

Answer:

[tex]3\sqrt[n]x^{10} y^{8}[/tex]

Step-by-step explanation: