The center of a circle is located at (6, -1). The radius of the circle is 4.

What is the equation of the circle in general form?

A. x^2 + y^2 - 12x + 2y + 33 = 0

B. x^2 + y^2 + 12x - 2y + 33 = 0

C. x^2 + y^2 - 12x + 2y + 21 = 0

D. x^2 + y^2 + 12x - 2y + 21 = 0

Respuesta :

Answer:

C) [tex]x^{2} +  y^{2} - 12x + 2y + 21 = 0[/tex]

Equation of a circle:

[tex](x-a)^{2} +(y-b)^{2} =r^{2}[/tex]

Substitute into the equation

a = 6

b = -1

r = 4

[tex](x-6)^{2} +(y--1)^{2} =4^{2}[/tex]

[tex](x-6)^{2} +(y+1)^{2} =16[/tex]

Expand and Simplify

[tex](x-6)^{2} = x^{2} - 12x + 36[/tex]

[tex](y+1)^{2} = y^{2} + 2y + 1[/tex]

[tex]x^{2} - 12x + 36 + y^{2} + 2y + 1 = 16[/tex]

[tex]x^{2} + y^{2} - 12x + 2y + 36 +  1 = 16[/tex]

[tex]x^{2} + y^{2} - 12x + 2y + 36 +  1 - 16 = 0[/tex]

[tex]x^{2} + y^{2} - 12x + 2y + 21 = 0[/tex]