Respuesta :

Answer:

The values of x are

[tex]x1=\frac{5(+)\sqrt{97}}{12}[/tex]

[tex]x2=\frac{5(-)\sqrt{97}}{12}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]6x^{2} -5x-3=0[/tex]  

so

[tex]a=6\\b=-5\\c=-3[/tex]

substitute in the formula

[tex]x=\frac{-(-5)(+/-)\sqrt{(-5)^{2}-4(6)(-3)}}{2(6)}[/tex]

[tex]x=\frac{5(+/-)\sqrt{97}}{12}[/tex]

[tex]x1=\frac{5(+)\sqrt{97}}{12}[/tex]

[tex]x2=\frac{5(-)\sqrt{97}}{12}[/tex]