Respuesta :

[tex] \sqrt{15} - 5 + 1 = \sqrt{15} - 4 < 0 \\ \Leftrightarrow | \sqrt{15} - 5 + 1| = | \sqrt{15} - 4| = 4 - \sqrt{15} [/tex]

The value of the expression [tex]|\sqrt{15}-5+1 |[/tex] without absolute bars is [tex]4 - \sqrt{15}[/tex]

How to rewrite the expression without absolute bars?

The rule is that if the expression within the absolute bars is positive, just remove the bars. Conversely, if negative, put a minus sign in front of the expression after removing the bars.

[tex]= |\sqrt{15}-5+1 |\\\\=|\sqrt{15}-4 |\\[/tex]

Calculating the value within the expression:

[tex]= \sqrt{15} - 4\\\\=3.873 - 4 \\\\= -0.127[/tex]

Since, the value of the expression is negative, |x| = -x.

So,

[tex]=|\sqrt{15}-4 | = -(\sqrt{15}-4)\\\\= 4 - \sqrt{15}[/tex]

Learn more about absolute bars here

https://brainly.com/question/17140480

#SPJ2