contestada

A right rectangular prism's edge lengths are 14 inches, 6 inches, and 3 1/3 inches. How many unit cubes with edge lengths of 2/5 inch can fit inside the prism?

Respuesta :

ANSWER

4375 unit cubes

EXPLANATION

The volume of a right rectangular prism is given by;

[tex]V=lbh[/tex]

We substitute the given dimension to obtain,

[tex]V=14 \times 6 \times \frac{10}{3} = 280i {n}^{3} [/tex]

The volume of the unit cube with edge lengths

[tex] \frac{2}{5} [/tex]

is

[tex] (\frac{2}{5})^{3} = \frac{8}{125} {in}^{3} [/tex]

To find the number of unit cubes that can fit inside the prism, we divide the volume of the rectangular prism by the volume of the unit cube.

[tex] = \frac{280}{ \frac{8}{125} } [/tex]

[tex] = 4375[/tex]