A football player kicks a ball with an initial upward velocity of 47 ft./s. The initial height of the ball is 3 feet. The function h(t)=-16t^2+vt+h0 models the height (in feet) of the ball, where V is the initial upward velocity and h0 is the initial height. If no one catches the ball, how long will it be in the air?

Respuesta :

Answer: 3 seconds

We are given the following function:

[tex]h(t)=-16{t}^{2}+V.t+h(o)[/tex]    (1)

Where:

[tex]t[/tex] is the time the ball is in the air

[tex]V=47ft/s[/tex] the initial upward velocity

[tex]h(o)=3ft[/tex] the initial height of the ball

[tex]h(t)[/tex] is the final height of the ball. If no one catches it, this will be zero

So, equation (1) changes to:

[tex]-16{t}^{2}+V.t+h(o)=0[/tex]    (2)

Substituting the known values:

[tex]-16{t}^{2}+(47ft/s).t+3ft=0[/tex]    (3)

This is a quadratic equation in the form [tex]a{t}^{2}+b.t+c=0[/tex]. In order to find [tex]t[/tex] we can use the quadratic formula for the roots:

[tex]t=\frac{-b\pm\sqrt{-4ac}}{2a}[/tex]    (4)

Where [tex]a=-16[/tex], [tex]b=47[/tex] and  [tex]c=3[/tex]

Substituting this values in (4):

[tex]t=\frac{-47\pm\sqrt{-4(-16)(3)}}{2(-16)}[/tex]    (5)

[tex]t=\frac{-47\pm\sqrt{2401}}{-32}[/tex]    (6)

[tex]t=\frac{-47\pm\49}{-32}[/tex]    (7)

For [tex]t1[/tex]:

[tex]t1=\frac{-47+49}{-32}=-0.0625 s[/tex]      (8)>>>> This result does not work for us because is negative

For [tex]t2[/tex]:

[tex]t2=\frac{-47-49}{-32}=3 s[/tex]   (9)>>>This is the result

Therefore:

If no one catches the ball, it will be 3 s in the air