contestada

What is the perimeter of ΔBDE?

a) √17 + √26 + 5
b) 4 √2 + √65 + 5
c) √34 + √65 + 5
d) √17 + 4 √7 + 2 √3

What is the perimeter of ΔBDE a 17 26 5 b 4 2 65 5 c 34 65 5 d 17 4 7 2 3 class=

Respuesta :

Answer:

a) [tex]\displaystyle \sqrt{17} + \sqrt{26} + 5[/tex]

Step-by-step explanation:

To find the length of all three sides, you have to use the Distance Formula:

[tex]\displaystyle \sqrt{[-x_1 + x_2]^2 + [-y_1 + y_2]^2} = D[/tex]

D[2, 6], and B[−2, 3] → DB

[tex]\displaystyle \sqrt{[-2 - 2]^2 + [-6 + 3]^2} = \sqrt{[-4]^2 + [-3]^2} = \sqrt{16 + 9} = \sqrt{25} = 5[/tex]

DB is 5 units long.

E[3, 2] and B[−2, 3] → EB

[tex]\displaystyle \sqrt{[-3 - 2]^2 + [-2 + 3]^2} = \sqrt{[-5]^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26}[/tex]

EB is [tex]\displaystyle \sqrt{26}[/tex]units long.

E[3, 2] and D[2, 6] → ED

[tex]\displaystyle \sqrt{[-3 + 2]^2 + [-2 + 6]^2} = \sqrt{[-1]^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17}[/tex]

ED is [tex]\displaystyle \sqrt{17}[/tex]units long.

Altogether, you have the perimeter of [tex]\displaystyle \sqrt{17} + \sqrt{26} + 5[/tex]units.

I am joyous to assist you anytime.

* Since we are talking about distance, we ONLY want the NON-NEGATIVE roots.