Respuesta :

Answer:

x < [tex]\frac{9-4b}{a}[/tex]

Step-by-step explanation:

Given

- ax + 4b > 9 ( isolate the term in x by subtracting 4b from both sides )

- ax > 9 - 4b ( divide both sides by - a )

Remembering to reverse the inequality symbol when dividing by a negative quantity, thus

x < [tex]\frac{9-4b}{a}[/tex]

[tex]\bold{Answer}[/tex]

[tex]\boxed{\bold{x<\frac{-9+4b}{a};\quad \:a\ne \:0}}[/tex]

[tex]\bold{Explanation}[/tex]

  • [tex]\bold{Solve: \ -ax+4b>9}[/tex]

[tex]\bold{---------------------}[/tex]

  • [tex]\bold{Subtract \ 4b \ From \ Both \ Sides}[/tex]

[tex]\bold{-ax+4b-4b>9-4b}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{-ax>9-4b}[/tex]

  • [tex]\bold{Multiply \ Both \ Sides \ By \ -1 \ (Reverse \ Inequality)}[/tex]

[tex]\bold{\left(-ax\right)\left(-1\right)<9\left(-1\right)-4b\left(-1\right)}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{ax<-9+4b}[/tex]

  • [tex]\bold{Divide \ Both \ Sides \ By \ a;\quad \:a\ne \:0}[/tex]

[tex]\bold{\frac{ax}{a}<-\frac{9}{a}+\frac{4b}{a};\quad \:a\ne \:0}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{x<\frac{-9+4b}{a};\quad \:a\ne \:0}[/tex]

[tex]\boxed{\bold{Eclipsed}}[/tex]