Respuesta :

Answer:

4√7*a^3

Step-by-step explanation:

a^6 is the same as (a^3)^2.  If we take the square root of this latter expression, the result will be a^3.

112 can be factored as follows:  2 * 56

                                                     2 * 7 * 8

                                                     2 * 7 * 2 * 4, or 7 4^2

Taking the square root of this last result yields 4√7.

Thus, √ (112a^6) = 4√7*a^3

The simplified form of the expression is [tex]4a^3\sqrt{7}[/tex]

Given the indices, [tex]\sqrt{ 112a^6}[/tex], we need to remove all the perfect squares from the square root. This is as shown below:

Applying the law of indices, the expression will become:

[tex]\sqrt{ 112a^6} \\=\sqrt{16 \times 7 \times (a^3)^2}\\=4\sqrt{7} \times \sqrt{(a^3)^2}\\= =4\sqrt{7} \times a^3\\=4a^3\sqrt{7}[/tex]

Hence the simplified form of the expression is [tex]4a^3\sqrt{7}[/tex]

Learn more here: https://brainly.com/question/20298728