Respuesta :

Answer:

1) Identify the values of a, b and c in the function [tex]f(x) = ax ^ 2 + bx + c[/tex]

2) Do [tex]x = -\frac{b}{2a}[/tex]

         [tex]y = f(-\frac{b}{2a})[/tex]

3) Then [tex]h = x[/tex] and [tex]k = y[/tex]

4) Once found the values of h and k, write the equation as:

[tex]f(x) = (x-h) ^ 2 + k[/tex]

Step-by-step explanation:

The standard form of a quadratic function is:

[tex]f(x) = ax ^ 2 + bx + c[/tex]

Where a, b and c are the coefficients of the monomials, and they are real numbers. By definition, the vertex of this function is:

[tex](-\frac{b}{2a}, f(-\frac{b}{2a}))[/tex]

Then, the vertex form of a quadratic function is:

[tex]f(x) = (x-h) ^ 2 + k[/tex]

Where the point (h, k) represents the vertex of the function.

The steps to convert a quadratic function to the standard form the vertex form is:

1) Identify the values of a, b and c in the function [tex]f(x) = ax ^ 2 + bx + c[/tex]

2) Do [tex]x = -\frac{b}{2a}[/tex]

         [tex]y = f(-\frac{b}{2a})[/tex]

3) Then [tex]h = x[/tex] and [tex]k = y[/tex]

4) Once found the values of h and k, write the equation as:

[tex]f(x) = (x-h) ^ 2 + k[/tex]