Need answer ASAP plz

ANSWER
[tex]x - 4 = 0 \: or \: x + 2 = 0[/tex]
EXPLANATION
Given:
[tex](x + 1)(x - 3) = 5[/tex]
Expand:
[tex] {x}^{2} - 3x + x - 3 = 5[/tex]
[tex] {x}^{2} - 2x - 3 = 5[/tex]
Equate everything to zero.
[tex] {x}^{2} - 2x - 3 - 5 = 0[/tex]
[tex] {x}^{2} - 2x - 8 = 0[/tex]
Split the middle term;
[tex] {x}^{2} + 2x - 4x - 8 = 0[/tex]
Factor;
[tex] x(x + 2) - 4(x + 2) = 0[/tex]
[tex](x - 4)(x + 2) = 0[/tex]
Use zero product property,
[tex]x - 4 = 0 \: or \: x + 2 = 0[/tex]
Answer:
Choice C is correct.
Step-by-step explanation:
We have given the equation:
(x+1)(x-3)=5
We have to choice the correct option.
Product property states that:
if ab=0 then a=0 or b =0.
(x+1)(x-3)=5
x²-2x-3 = 5
x²-2x-3-5 = 0
x²-2x-8 = 0
factorize the above equation we get,
x²+2x-4x-8=0
x(x+2)-4(x+2) = 0
(x+2)(x-4) = 0
Using zero product property we get,
(x+2) = 0 or (x-4) = 0
So, choice C is correct.