Respuesta :
Answer:
This does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−64, 64).
Step-by-step explanation:
The given function is
[tex]f(x)=16-\frac{x^2}{3}[/tex]
To find [tex]f(-64)[/tex], we substitute [tex]x=-64[/tex] into the function.
[tex]f(-64)=16-\frac{(-64)^2}{3}[/tex]
[tex]f(-64)=16-\frac{4096}{3}[/tex]
[tex]f(-64)=-\frac{4048}{3}[/tex]
To find [tex]f(64)[/tex], we substitute [tex]x=64[/tex] into the function.
[tex]f(64)=16-\frac{(64)^2}{3}[/tex]
[tex]f(64)=16-\frac{4096}{3}[/tex]
[tex]f(64)=-\frac{4048}{3}[/tex]
To find [tex]f'(c)[/tex], we must first find [tex]f'(x)[/tex].
[tex]f'(x)=-\frac{2x}{3}[/tex]
This implies that;
[tex]f'(c)=-\frac{2c}{3}[/tex]
[tex]f'(c)=0[/tex]
[tex]\Rightarrow -\frac{2c}{3}=0[/tex]
[tex]\Rightarrow -\frac{2c}{3}\times -\frac{3}{2}=0\times -\frac{3}{2}[/tex]
[tex]c=0[/tex]
For this function to satisfy the Rolle's Theorem;
It must be continuous on [tex][-64,64][/tex].
It must be differentiable on [tex](-64,64)[/tex].
and
[tex]f(-64)=f(64)[/tex].
All the hypotheses are met, hence this does not contradict Rolle's Theorem, since f '(0) = 0, and 0 is in the interval (−64, 64) is the correct choice.
Answer:
c = DNE
Option C: This contradicts Rolle's Theorem, since f(−64) = f(64), there should exist a number c in (−64, 64) such that f '(c) = 0.
Step-by-step explanation:
The given function is
[tex]f(x)=16-x^{\frac{2}{3}}[/tex]
Rolle's theorem states that if the function f is
1. Continuous on [a, b],
2. Differentiable on the open interval (a, b) such that f(a) = f(b),
then f′(x) = 0 for some x with a ≤ x ≤ b.
At x=64,
[tex]f(64)=16-(64)^{\frac{2}{3}}=0[/tex]
At x=-64,
[tex]f(-64)=16-(-64)^{\frac{2}{3}}=0[/tex]
So, f(−64) = f(64).
Differentiate the given function with respect to x.
[tex]f'(x)=0-\frac{2}{3}x^{-\frac{1}{3}}[/tex]
[tex]f'(x)=-\frac{2}{3x^{\frac{1}{3}}}[/tex]
Substitute x=c,
[tex]f'(c)=-\frac{2}{3c^{\frac{1}{3}}}[/tex]
We need to find the value of c such that f '(c) = 0.
[tex]f'(c)=0[/tex]
[tex]-\frac{2}{3c^{\frac{1}{3}}}=0[/tex]
[tex]-2=0[/tex]
This equation is not true for any value of c. So, the value of does not exist.
This contradicts Rolle's Theorem, since f(−64) = f(64), there should exist a number c in (−64, 64) such that f '(c) = 0.
Therefore, the correct option is C.