Answer:
- 65.1
- 10^-4
Step-by-step explanation:
1. Fill the given numbers into the formula and do the arithmetic.
[tex]\displaystyle\beta=10 \log{\left(\frac{I}{I_0}\right)}=10\log{\left(\frac{3.2 \times 10^{-6}}{10^{-12}}\right)}\\\\=10\log{\left(3.2 \times 10^{6}\right)}\approx 65.1\quad\text{dB}[/tex]
___
2. Fill the given numbers into the formula and solve for I.
[tex]\displaystyle\beta=10 \log{\left(\frac{I}{I_0}\right)}\\\\80=10\log{\left(\frac{I}{10^{-12}}\right)}\\\\8=\log{(I)}+12\qquad\text{divide by 10, simplify}\\\\-4=\log{(I)}\qquad\text{subtract 12}\\\\10^{-4}=I\qquad\text{take the antilog}[/tex]