The first two terms of a geometric sequence are a1 = 1/3 and a2 = 1/6. What is a8, the eighth term?

A. 1/256
B. 1/384
C. 1/768
D. 1/128 10 points

Respuesta :

Answer:

B. 1/384

Step-by-step explanation:

a1=1/3

a2 = 1/6

The constant factor is 1/2

a1=2/3*1/2

a2=2/3*1/2^2

a8=2/3*(1/2)^8

2/3*1/256

Answer:

B

Step-by-step explanation:

Given the sequence is geometric then the common ratio r is

r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{\frac{1}{6} }{\frac{1}{3} }[/tex] = [tex]\frac{1}{2}[/tex]

The n th term of a geometric sequence is

[tex]a_{n}[/tex] = [tex]a_{1}[/tex] [tex](r)^{n-1}[/tex]

                       = [tex]\frac{1}{3}[/tex] × [tex](\frac{1}{2}) ^{7}[/tex]

                      = [tex]\frac{1}{3}[/tex] × [tex]\frac{1}{128}[/tex] = [tex]\frac{1}{384}[/tex]