1. Evaluate the function: g(x)=2x+12 for g(7)-5

2. Find the slope of the line through the pair of points. C(–7, 5), D(–9, 9)

3.Evaluate f(x) = -1/3x for f(4).

Respuesta :

QUESTION 1

The given function is

[tex]g(x) = 2x + 12[/tex]

This implies that,

[tex]g(x) - 5 = 2x + 12 - 5[/tex]

[tex]g(x) - 5 = 2x + 7[/tex]

We now put x=7 to obtain,

[tex]g(7) - 5 = 2(7) + 7[/tex]

Simplify,

[tex]g(7) - 5 = 14+ 7[/tex]

[tex]g(7) - 5 = 21[/tex]

QUESTION 2

The given pair of points are C(–7, 5) and D(–9, 9).

The is given by the formula:

[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]

We plug in the coordinates to obtain,

[tex]m = \frac{9 - 5}{ - 9 - - 7} [/tex]

[tex]m = \frac{4}{ - 2} [/tex]

[tex]m = - 2[/tex]

The slope is

[tex] - 2[/tex]

QUESTION 3

The given function is

[tex]f(x) = - \frac{1}{3}x [/tex]

To evaluate this function for f(4) means we should substitute x=4 into the formula and simplify.

[tex]f(4) = - \frac{1}{3} \times 4[/tex]

[tex]f(4) = - \frac{4}{3} [/tex]

[tex]f(4) = - 1 \frac{1}{3} [/tex]