Respuesta :

Answer:

f(3) = 5.85

Step-by-step explanation:

To solve this problem we have the exponential function

[tex]f(x) = \frac{8}{1 + 3e ^{-0.7x}}[/tex]

To find f(3) you must replace x = 3 in the function.

Then we have left:

[tex]f(3) = \frac{8}{1 + 3e ^{-0.7(3)}}[/tex]

solving the power we have...

[tex]f(3) = \frac{8}{1 +0.367}[/tex]

Now solve the function and finally we have to:

f(3) = 5.85

Answer:

F(3) = 5.85

Step-by-step explanation:

The given function is [tex]F(x)=\frac{8}{1+3e^{-.7x} }[/tex]

By the simplification of given function

[tex]F(x)=\frac{8}{1+3e^{-.7x} }[/tex]

[tex]F(x)=\frac{8e^{.7x} }{e^{.7x}+3 }[/tex]

We have to find the value of f(3)

F(3) = [tex]\frac{8e^{2.1} }{3+e^{2.1} } = \frac{(8)(8.17)}{3+8.17}=\frac{65.36}{11.17}=5.85[/tex]

Therefore the answer is 5.85.