Respuesta :
Answer:
f(3) = 5.85
Step-by-step explanation:
To solve this problem we have the exponential function
[tex]f(x) = \frac{8}{1 + 3e ^{-0.7x}}[/tex]
To find f(3) you must replace x = 3 in the function.
Then we have left:
[tex]f(3) = \frac{8}{1 + 3e ^{-0.7(3)}}[/tex]
solving the power we have...
[tex]f(3) = \frac{8}{1 +0.367}[/tex]
Now solve the function and finally we have to:
f(3) = 5.85
Answer:
F(3) = 5.85
Step-by-step explanation:
The given function is [tex]F(x)=\frac{8}{1+3e^{-.7x} }[/tex]
By the simplification of given function
[tex]F(x)=\frac{8}{1+3e^{-.7x} }[/tex]
[tex]F(x)=\frac{8e^{.7x} }{e^{.7x}+3 }[/tex]
We have to find the value of f(3)
F(3) = [tex]\frac{8e^{2.1} }{3+e^{2.1} } = \frac{(8)(8.17)}{3+8.17}=\frac{65.36}{11.17}=5.85[/tex]
Therefore the answer is 5.85.