Respuesta :
Answer:
[tex]\sqrt{50x^{2} }=5x\sqrt{2}\\\sqrt{72x^{2}}=6x\sqrt{2}[/tex]
Step-by-step explanation:
At first simplify each radical:
[tex]\sqrt{50x^{2}} =\sqrt{(2)(25)x^{2}}=\sqrt{(2)(5^{2})x^{2}}=5x\sqrt{2}[/tex]
[tex]\sqrt{32x}=\sqrt{(2)(16)x}=\sqrt{(2)(4^{2})x}=4\sqrt{2x}[/tex]
[tex]\sqrt{18n}=\sqrt{(2)(9)n}=\sqrt{(2)(3^{2})n}=3\sqrt{2n}[/tex]
[tex]\sqrt{72x^{2}}=\sqrt{(2)(36)x^{2}}=\sqrt{(2)(6^{2})x^{2}}=6x\sqrt{2}[/tex]
After the simplify of all radicals we found that the like radicals are:
[tex]\sqrt{50x^{2} }[/tex] and [tex]\sqrt{72x^{2}}[/tex]