Respuesta :

Answer:

[tex]7x+5y-48=0[/tex]

Step-by-step explanation:

Refer the attached figure .

We are given a line AB

Point A[tex]=(x_1,y_1) = (-3,-1)[/tex]

Point B[tex]=(x_2,y_2) = (4,4)[/tex]

Formula for slope 'm' when two points are given :

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substituting thew values

[tex]m=\frac{4-(-1)}{4-(-3)}[/tex]

[tex]m=\frac{5}{7}[/tex]

Since we are given that AB is perpendicular to BC

So, By property - perpendicular slopes are negative reciprocals of each other.

[tex]\Rightarrow m_1\times m_2 =-1[/tex]

[tex]\Rightarrow \frac{5}{7}\times m_2 =-1[/tex]

[tex]\Rightarrow m_2 = \frac{-7}{5}[/tex]

So, Slope for line BC : [tex]m_2 = \frac{-7}{5}[/tex]

Point B = (4,4)

Formula of equation of line : [tex]y-y_1=m(x-x_1)[/tex]

[tex]y-4=\frac{-7}{5}(x-4)[/tex]

[tex]5(y-4)=-7(x-4)[/tex]

[tex]5y-20=-7x+28[/tex]

[tex]7x+5y-20-28=0[/tex]

[tex]7x+5y-48=0[/tex]

Hence the equation of line BC : [tex]7x+5y-48=0[/tex]

Ver imagen wifilethbridge

Answer:

-7x − 5y = -48

Step-by-step explanation:

This was correct on plato :D