Respuesta :
Answer: 13.543 years ( approx )
Step-by-step explanation:
Here, the principal amount = 20,000
Annual rate of interest = 7 %
Let the amount will be $ 50,000 after t years,
The total compounded amount after t years = $ 50000
[tex]\implies 20000(1+\frac{7}{100})^t=50000[/tex]
[tex]\implies 2(1+0.07)^t=5[/tex]
[tex]\implies (1.07)^t=2.5[/tex]
By taking log on both sides,
[tex]\implies t log (1.07)=log(2.5)[/tex]
[tex]\implies t=\frac{log(2.5)}{log(1.07)}[/tex]
[tex]\implies t=13.5428471\approx 13.543\text { years}[/tex]