Respuesta :
Answer: Magnitude of wx is [tex]\sqrt{145}[/tex]
Step-by-step explanation:
Since we have given that
[tex]w(-3,5,4)=-3\hat{i}+5\hat{j}+4\hat{k}\\\\x(9,5,3)=9\hat{i}+5\hat{j}+3\hat{k}[/tex]
Now, first we will find 'wx':
[tex]wx=Initial-Final\\\\wx=(9+3)\hat{i}+(5-5)\hat{j}+(3-4)\hat{k}\\\\wx=12\hat{i}-1\hat{k}[/tex]
We need to find the "magnitude":
[tex]\mid wx\mid=\sqrt{12^2+1^2}=\sqrt{144+1}=\sqrt{145}[/tex]
Hence, Magnitude of wx is [tex]\sqrt{145}[/tex]
Answer:
Magnitude = [tex]\sqrt({145)[/tex].
Step-by-step explanation:
Given : wx for w(-3 5 4) and x(9 5 3).
To find : find the magnitude of wx .
Solution : We have given that w(-3 5 4) and x(9 5 3).
Magnitude = [tex]\sqrt({x_{2} -x_{1} )^{2}+({y_{2} -y_{1} )^{2} +({z_{2} -z_{1})^{2}[/tex].
[tex]x_{1}= -3[/tex] , [tex]x_{2} = 9[/tex] , [tex]y_{1} = 5[/tex] , [tex]y_{2} = 5[/tex], [tex]z_{1} = 4[/tex], [tex]z_{2} = 3[/tex].
Plugging the values in above formula ,
Magnitude = [tex]\sqrt({9 - (-3))^{2}+({5-5 )^{2} +({3 -4)^{2}[/tex].
Magnitude = [tex]\sqrt({12)^{2}+({0 )^{2} +({-1^{2}[/tex].
Magnitude = [tex]\sqrt({144+0+1)[/tex].
Magnitude = [tex]\sqrt({145)[/tex].
Therefore, Magnitude = [tex]\sqrt({145)[/tex].