Respuesta :
let a=2018, we can rewrite the question into
[tex](a-1)(a^9+a^8+...+a^2+a+2)\\=(a-1)(a^9+a^8+...+a^2+a+1)+(a-1)\\=a^{10}-1+a-1[/tex]
substitute back a = 2018, obtained
[tex] {2018}^{10} + 2016[/tex]
well, there is something wrong here
[tex](a-1)(a^9+a^8+...+a^2+a+2)\\=(a-1)(a^9+a^8+...+a^2+a+1)+(a-1)\\=a^{10}-1+a-1[/tex]
substitute back a = 2018, obtained
[tex] {2018}^{10} + 2016[/tex]
well, there is something wrong here