Respuesta :

QUESTION 1

From Pythagoras Theorem,

[tex]|KI|^2+|KL|^2=|LI|^2[/tex]

[tex]|KI|^2+16^2=20^2[/tex]

[tex]|KI|^2+256=400[/tex]

[tex]|KI|^2=400-256[/tex]

[tex]|KI|^2=144[/tex]

[tex]|KI|=\sqrt{144}[/tex]

[tex]|KI|=12[/tex]

Let [tex]HI=x[/tex], then [tex]LH=20-x[/tex]

From ΔHKI,

[tex]x^2+|HK|^2=12^2[/tex]

[tex]\Rightarrow |HK|^2=144-x^2..(1)[/tex]

From ΔHKL,

[tex]|HK|^2+(20-x)^2=16^2[/tex]

[tex]\Rightarrow |HK|^2=256-(20-x)^2[/tex]

[tex]\Rightarrow |HK|^2=-x^2+40x-144...(2)[/tex]

Solving equation (1) and (2) gives

[tex]144-x^2=-x^2+40x-144[/tex]

[tex]40x=288[/tex]

[tex]x=\frac{36}{5}[/tex]

[tex]|LH|=20-\frac{36}{5} =\frac{64}{5}=12.8 units[/tex]

QUESTION 2

ΔLKI is similar to ΔOHL

[tex]\frac{|OH|}{|KI|}=\frac{|LI|}{|LH|}[/tex]

[tex]\frac{|OH|}{12}=\frac{\frac{64}{5} }{20}[/tex]

[tex]\frac{|OH|}{12}=\frac{16}{25}[/tex]

[tex]|OH|=\frac{16}{25}\times 12[/tex]

[tex]|OH|=\frac{192}{25}=7.68units[/tex]