Respuesta :

[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$600\\ r=rate\to 7\%\to \frac{7}{100}\dotfill &0.07\\ t=years\dotfill &5 \end{cases} \\\\\\ A=600e^{0.07\cdot 5}\implies A=600e^{0.35}\implies A\approx 851.44[/tex]

The compound interest be 841.80

What is Compound Interest?

To find Compound Interest use the Formula:

[tex]$A=P\left(1+\frac{r}{n}\right)^{n t}$[/tex]

where A be the compound interest

P exists the amount deposited [tex]$(\$ 600)$[/tex]

r exists the rate (7 %)

n exists the number of times it is compounded in one year (1)

t exists the number of years (5)

Given:

$600 exists deposited in an account that pays 7% annual interest, compounded continuously.

Step 1

Substitute the values in the above equation,

[tex]$A=600\left(1+\frac{7}{100 \cdot 1}\right)^{1 \cdot 5}$[/tex]

simplifying the equation as

[tex]$A=600(1+0.07)^{5}$[/tex]

[tex]$A=600 \cdot(1.07)^{5}$[/tex]

[tex]$A=600 \cdot 1.403$[/tex]

[tex]$A=\$ 841.80$[/tex].

The compound interest be 841.80

Therefore, the correct answer is 841.80.

To learn more about compound interest, refer:

https://brainly.com/question/18456266

#SPJ2

Otras preguntas