Respuesta :

Answer: The last option.

Step-by-step explanation:

The triangle shown in the figure attached is a right triangle.

1. You can calculate the lenght a as following:

[tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]

[tex]opposite=a\\hypotenuse=6in\\\alpha=30\°[/tex]

Substitute values and solve for a. Then, you obtain:

[tex]sin(30\°)=\frac{a}{6in}\\a=6in*sin(30\°)\\a=3in[/tex]

2.  You can calculate the lenght b as following:

[tex]cos\alpha=\frac{adjacent}{hypotenuse}[/tex]

[tex]adjacent=b\\hypotenuse=6in\\\alpha=30\°[/tex]

Substitute values and solve for b. Then, you obtain:

[tex]cos(30\°)=\frac{b}{6in}\\b=6in*cos(30\°)[/tex]

[tex]b=3\sqrt{3}in[/tex]