What are the relative minimum and relative maximum values over the interval [−4,4] for the function shown in the graph?


relative minimum = −36 , relative maximum = 64

relative minimum = −3 , relative maximum = −36

relative minimum = 0, relative maximum = 64

relative minimum = −3 , relative maximum = 64



The table of values represents a polynomial function ​f(x)​.

How much greater is the average rate of change over the interval [5,7] than the interval [2, 4] ?

2 39
3 125
4 287
5 549
6 935
7 1469
Enter your answer in the box.

What are the relative minimum and relative maximum values over the interval 44 for the function shown in the graph relative minimum 36 relative maximum 64 relat class=

Respuesta :

Answer:

Relative minimum :  -36

Relative maximum :  64

The rate of change is 336 greater

Step-by-step explanation:

Relative minimum are the minimum values  in the interval

Looking at the graph, we find the lowest point in the interval

Relative minimum : (-3, -36) and (3,-36)  y value -36

Looking at the graph, we find the highest point in the interval

Relative maximum : (0,64)  y value 64

Average rate of change = f(x2) - f(x1)

                                          ---------------

                                            x2 - x1

                                       

                                         f(7) - f(5)     1469 - 549      920

                                        ------------- = ---------------   = ------- = 460

                                             7-5               7-5                2

                                         f(4) - f(2)     287 - 39         248

                                        ------------- = ---------------   = ------- = 124

                                             4-2               4-2                2

We need to subtract

460-124

336

The relative minimum would be the Y value of the lowest point of the curved the line which is -36.

The relative maximum would be the Y value of the highest point of the curved line which is at 64.

Answer: relative minimum = −36 , relative maximum = 64

Rate of change between [5,7]

At 5 y = 549 at 7 y = 1469

Rate of change = change in y over change in x:

1469 - 549 / 7-5 = 920/2 = 460

Rate of change between [2,4]

At 2 y = 39, at 4 y = 287

Rate of change:

287 - 39 / 4-2 = 248/2 = 124

Now subtract the two: 460 - 124 = 336 greater