Respuesta :
Answer:
[tex]y = 5sin(\frac{\pi}{12}x) + 7[/tex]
Step-by-step explanation:
The general equation of a sinusoidal function is:
[tex]y = Asin(wx + c) + s[/tex]
Where:
A = amplitude
w = angular velocity = [tex]\frac{2\pi}{T}[/tex]
T = period = [tex]\frac{2\pi}{w}[/tex]
c = phase angle
s = vertical displacement.
[tex]A = \frac{(max -min)}{2}[/tex]
[tex]A = \frac{(12 -2)}{2}[/tex]
[tex]A = 5[/tex]
[tex]T = 24\ h[/tex]
[tex]w = \frac{2\pi}{24} = \frac{\pi}{12}[/tex]
[tex]s = \frac{max + min}{2} = \frac{12 + 2}{2}[/tex]
[tex]s = 7[/tex]
[tex]c = 0[/tex]
So, the equation is:
[tex]y = 5sin(\frac{\pi}{12}x) + 7[/tex]
Answer:
The given function will be f(x) = 5 sin(πx/12) + 7
Step-by-step explanation:
Let the sin function be f(x) = a sin( bx+c) + d
In the given question tide measured at midnight was = 7 ft which rose to a high of 12 ft and fell to a low of 2 ft.
Therefore amplitude a = (12-2)÷2 = 10÷2 = 5
Period b = 2π÷24 = π/12
Horizontal displacement c = 0
Vertical shift d = 7
Now by putting these values in the assumed function.
f(x) = 5 sin(πx/12) + 7
So the right answer is f(x) = 5 sin(πx/12) +7
