Respuesta :

The goal in rearranging equations to solve for y is to get y all by itself on one side.

Remember the order of operations.

PEMDAS (parentheses, exponents, multiplication, division, addition, subtraction)

When you isolate variables to solve for them, you'll do the order of operations in reverse.

Ver imagen trucker99

Isolate "y" by using the reverse of PEMDAS

Answer:   [tex]\bold{y=\dfrac{m}{b}}[/tex]

Step-by-step explanation:

[tex]b{y} = m\\\\\dfrac{b\boxed{y}}{b}=\dfrac{m}{b}\\\\y=\dfrac{m}{b}[/tex]

Answer:   [tex]\bold{y=\dfrac{c-b}{a}}[/tex]

[tex]ay+b=c\\\\\boxed{ay}+b=c\\.\underline{\ \quad-b}\quad \underline{-b}\\ay\qquad=c-b\\\\\dfrac{a\boxed{y}}{a}=\dfrac{c-b}{a}\\\\y=\dfrac{c-b}{a}[/tex]

Answer:   [tex]\bold{\pm \sqrt{\dfrac{v}{\pi h}}=y}[/tex]

[tex]v=\pi y^2h\\\\\dfrac{v}{\pi h}=\dfrac{\pi \boxed{y^2}h}{\pi h}\\\\\\\dfrac{v}{\pi h}=y^2\\\\\\\sqrt{\dfrac{v}{\pi h}}=\sqrt{y^2}\\\\\\\pm \sqrt{\dfrac{v}{\pi h}}=y[/tex]

Answer:   [tex]\bold{\dfrac{a}{pm}=y}[/tex]

[tex]a=pmy\\\\\dfrac{a}{pm}=\dfrac{pm\boxed{y}}{pm}\\\\\\\dfrac{a}{pm}=y[/tex]