Respuesta :

Answer:

C. 9

Step-by-step explanation:

The vertex form of the function is given by;

[tex]f(x)=a(x-h)^2+k[/tex]

where [tex](h,k)=(1,1)[/tex] is the vertex of the parabola.

[tex]f(x)=a(x-1)^2+1[/tex]

We substitute a third point say, (3,5) to find the value of a;

[tex]5=a(3-1)^2+1[/tex]

[tex]5-1=a(2)^2[/tex]

[tex]4=4a[/tex]

[tex]1=a[/tex]

The function is

[tex]f(x)=(x-1)^2+1[/tex]

[tex]f(6)=(6-1)^2+1[/tex]

[tex]f(6)=(5)^2+1[/tex]

[tex]f(6)=26[/tex]

The average rate of change for the interval x=5 to x=6 is

[tex]=\frac{f(6)-f(5)}{6-5}[/tex]

[tex]=\frac{26-17}{1}[/tex]

[tex]=9[/tex]

Answer:

top answer is correct.

Step-by-step explanation: