Answer:
The values of given function are shown in the below table.
Step-by-step explanation:
The given function is
[tex]f(x)=\frac{x^2-5x}{x^2-x-20}[/tex]
Simplify the given function.
[tex]f(x)=\frac{x(x-5)}{x^2-5x+4x-20}[/tex]
[tex]f(x)=\frac{x(x-5)}{x(x-5)+4(x-5)}[/tex]
[tex]f(x)=\frac{x(x-5)}{(x+4)(x-5)}[/tex]
Cancel out the common factor.
[tex]f(x)=\frac{x}{x+4}[/tex]
Substitute x=5.5 in the above equation.
[tex]f(5.5)=\frac{5.5}{5.5+4}[/tex]
[tex]f(5.5)=\frac{5.5}{9.5}[/tex]
[tex]f(5.5)=0.57894736842[/tex]
[tex]f(5.5)\approx 0.578947[/tex]
Similarly find the value for all values of x.
The values of given function are shown in the below table.