Respuesta :

Answer:

B (3 - i)

Step-by-step explanation:

To find the quotient of the complex numbers you must multiply the numerator and the denominator by the conjugate of the denominator

Example: The conjugate of (3 - i) is (3 + i)

[tex]\frac{8-6i}{3-i} *\frac{3+i}{3+i}[/tex]

[tex](3-i)(3+i)=9-i^{2}[/tex]

[tex]i^{2}=-1[/tex]

So [tex](3-i)(3+i)=9--1=10[/tex]

Denominator= 10

[tex](8-6i)(3+i)=24+8i-18i-6i^{2}[/tex]

[tex]24-10i-6i^{2} =24-10i-6(-1)=24-10i+6=30-10i[/tex]

Numerator = 30 - 10i

Then [tex]\frac{30-10i}{10} =\frac{30}{10}-\frac{10i}{10}  = 3 - i[/tex]

The correct answer is B