frtjay
contestada

Using Cramer’s Rule, what is the value of x in the system of linear equations below?
5x - 4 = 3y
2x +32 = 4y

a. 1/12
b. 2/3
c. 8
d. 12

Respuesta :

Answer:

x = 8 is the answer

Step-by-step explanation:

In order to find  the solution of Equations using Cramer's rule

we shall find  matrices

D= [tex]\left[\begin{array}{ccc}5&-3\\1&-2\end{array}\right][/tex]=

[tex]D_{1} = \left[\begin{array}{ccc}4&-3\\-16&-2\end{array}\right][/tex]

l D l  = Determinant formed by coefficient  of variables

Here l D l = 5X(-2) - 1X(-3)=  -10+3 = -7

l D1 l =   Determinant formed by replacing first column In D by numbers on the right side of the equations

Here  l D1 l = 4X(-2)- (-16)X(-3)= -8-48 = -56

here x is  given by [tex]\frac{l D1 l}{l D l}[/tex]

             x = [tex]\frac{-56}{-7}[/tex]

             x = 8