Respuesta :

Answer:

[tex]\log_{11}(5)=0.671[/tex]  and [tex]\log_4(40)=2.661[/tex]

Step-by-step explanation:

Given:  [tex]\log_{11}5[/tex] and  [tex]\log_{4}40[/tex]

We have to rewrite each logarithm as a quotient of natural logarithms.

Using property of logarithm,

[tex]\log_a(b)=\frac{\log_eb}{\log_ea}[/tex]

Consider 1) [tex]\log_{11}5[/tex]

Applying property stated above,

[tex]\log_{11}(5)=\frac{\log_e5}{\log_e11}[/tex]

We have [tex]{\log_e5}=1.609[/tex](approx)

[tex]{\log_e11}=2.398[/tex](approx)

Substitute, we get,

[tex]\log_{11}(5)=0.671[/tex]

Consider 2) [tex]\log_{4}40[/tex]

Applying property stated above,

[tex]\log_4(40)=\frac{\log_e40}{\log_e4}[/tex]

We have [tex]{\log_e40}=3.689[/tex](approx)

[tex]{\log_e4}=1.386[/tex](approx)

Substitute, we get,

[tex]\log_4(40)=2.661[/tex]

Thus, [tex]\log_{11}(5)=0.671[/tex]  and [tex]\log_4(40)=2.661[/tex]