Respuesta :

Answer:

[tex]D. \: \frac{10 {x}^{2} + 50x}{ {x}^{2} - 49 } [/tex]

Step-by-step explanation:

The given rational expression is

[tex] \frac{x + 5}{x + 7} \cdot \frac{10x}{x - 7} [/tex]

We multiply to obtain:

[tex] \frac{10x(x + 5)}{(x + 7)(x - 7)} [/tex]

Expand the numerator using the distributive property and the denominator using difference of two squares to get:

[tex] \frac{10 {x}^{2} + 50x }{ {x}^{2} - {7}^{2} } [/tex]

This simplifies to

[tex] \frac{10 {x}^{2} + 50x}{ {x}^{2} - 49 } [/tex]