Respuesta :

Answer: 32

Step-by-step expanation:

Answer:

Option D is correct

[tex]\angle E = 32^{\circ}[/tex]

Step-by-step explanation:

In the given diagram below DE and EF are tangent to O.

Join the point D and O and O and F as shown below.

It is given that:

[tex]\text{arc(DF)} = \angle DOF[/tex]

⇒[tex]148^{\circ} = \angle DOF[/tex]

or

[tex]\angle DOF = 148^{\circ}[/tex]

A line is tangent to circle if and only if the line is perpendicular to the radius drawn to the point of tangency.

Since, DE and EF are tangent

then:

[tex]\angle ODE = \angle OFE = 90^{\circ}[/tex]

In a quadrilateral EDOF:

Sum of all the angles add up to 360 degree.

[tex]\angle FED +\angle ODE + \angle DOF+ \angle OFE = 360^{\circ}[/tex]

Substitute the given values we have;

[tex]\angle FED +90^{\circ}+ 148^{\circ} +90^{\circ} = 360^{\circ}[/tex]

⇒[tex]\angle FED + 328^{\circ} = 360^{\circ}[/tex]

Subtract 328 degree from both sides we have;

[tex]\angle FED = 32^{\circ}[/tex]

Therefore, the measure of angle E is, 32 degree.