Heron’s formula: Area = An equilateral triangle has a semiperimeter of 6 meters. What is the area of the triangle? Round to the nearest square meter. 2 square meters 7 square meters 20 square meters 78 square meters

Respuesta :

Answer:

7 m^2

Step-by-step explanation:

[tex] s = \dfrac{a + b + c}{2} [/tex]

[tex] A = \sqrt{s(s - a)(s - b)(s - c)} [/tex]

[tex] s = 6 [/tex]

[tex] \dfrac{a + b + c}{2} = 6 [/tex]

[tex] a = b = c [/tex]

[tex] \dfrac{a + a + a}{2} = 6 [/tex]

[tex] 3a = 12 [/tex]

[tex] a = b = c = 4 [/tex]

[tex] A = \sqrt{6(6 - 4)(6 - 4)(6 - 4)} [/tex]

[tex] A = \sqrt{6(2)^3 [/tex]

[tex] A = \sqrt{48} [/tex]

[tex] A = 6.92820... [/tex]

[tex] A = 7~m^2 [/tex]

Answer:

Option 2 is correct that is area of triangle is 7 m².

Step-by-step explanation:

Given: Equilateral Triangle is given.

           Semi Perimeter of triangle = 6

To find: Area of the triangle

Let, Side of equilateral triangle be x

Semi Perimeter, s =   [tex]\frac{x+x+x}{2}[/tex]

                          [tex]\frac{3x}{2}=6[/tex]

                          [tex]3x=12[/tex]

                          [tex]x=4[/tex]

By Heron's formula,

[tex]Area=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

           [tex]=\sqrt{6(6-4)(6-4)(6-4)}[/tex]

           [tex]=\sqrt{6\times2\times2\times2}[/tex]

           [tex]=\sqrt{48}[/tex]

           [tex]=4\sqrt{3}[/tex]

           [tex]=4\times1.73[/tex]

           [tex]=6.92[/tex]

           [tex]=7\:m^2\:(approx.)[/tex]

Therefore, Option 2 is correct that is area of triangle is 7 m².