Respuesta :

Answer:

The correct option is c.

Step-by-step explanation:

The given equations are

[tex]4x-2y=8[/tex]        ....(1)

[tex]2x-4y=4[/tex]        ....(2)

Multiply equation (1) by 2 and multiply equation (2) by 4.

[tex]8x-4y=16[/tex]        ....(3)

[tex]8x-16y=16[/tex]        ....(4)

Subtract equation (4) from equation (3).

[tex]8x-4y-8x+16y=16-16[/tex]

[tex]12y=0[/tex]

[tex]y=0[/tex]

Put this value in equation (1).

[tex]4x-2(0)=8[/tex]

[tex]4x=8[/tex]

[tex]x=2[/tex]

The solution of the system of equations is (2,0).

Therefore option c is correct.

Answer:

Option c. (2,0)

Step-by-step explanation:

(1) 4x-2y=8

(2) 2x-4y=4

Using the method of elimination: Multiplying the second equation by -2:

(2)   -2(2x-4y)=-2(4)

Applying the distributive property:

-2(2x)-2(-4y)=-8

-4x+8y=-8

Adding this equation with the first equation:

-4x+8y+4x-2y=-8+8

6y=0

Solving for "y": Dividing both sides of the equation by 6:

6y/y=0/6

y=0

Replacing y=0 in the second equation:

(2) 2x-4(0)=4

2x-0=4

2x=4

Solving for "x": Dividing both sides of the equation by 2:

2x/2=4/2

x=2

The solution is (x,y)=(2,0)