Answer:
see explanation
Step-by-step explanation:
Using the trigonometric identity
• 1 + cot²x = csc²x
Consider the left side
[tex]csc^{4}[/tex] x - [tex]cot^{4}[/tex] x
Factorise as a difference of squares
= (csc²x - cot²x)(csc²x + cot²x)
= (1 + cot²x - cot²x)(csc²x + cot²x)
= csc²x + cot²x
= csc²x + csc²x - 1
= 2csc²x - 1 = right side ⇒ verified