Respuesta :

Answer:

[tex]cos{\frac{2\pi}{3}}=-\frac{1}{2}[/tex].

Reference angle is [tex]\frac{\pi}{3}[/tex]

Step-by-step explanation:

Given the value of x. we have to find the correct value of cosx.

[tex]x=\frac{2\pi}{3}[/tex]

Now, we have to find the exact value of [tex]cos{\frac{2\pi}{3}}[/tex]

[tex]cos{\frac{2\pi}{3}}=cos(\frac{\pi}{2}+\frac{\pi}{6})[/tex]

                [tex]=-sin(\frac{\pi}{6})[/tex]

                 [tex]=-\frac{1}{2}[/tex]

Now, we have to find the reference angle of [tex]x=\frac{2\pi}{3}[/tex].

Since the angle [tex]x=\frac{2\pi}{3}[/tex] lies in second quadrant, the reference angle formula is

Reference angle= [tex]\pi-given angle[/tex].

                           =[tex]\pi-\frac{2\pi}{3}=\frac{\pi}{3}[/tex]

Ver imagen SerenaBochenek